trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals.
نویسندگان
چکیده
A large number of industrial chemicals and environmental pollutants, including trichloroethylene (TCE), di(2-ethylhexyl)phthalate (DEHP), perfluorooctanoic acid (PFOA), and various phenoxyacetic acid herbicides, are nongenotoxic rodent hepatocarcinogens whose human health risk is uncertain. Rodent model studies have identified the receptor involved in the hepatotoxic and hepatocarcinogenic actions of these chemicals as peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor that is highly expressed in liver. Humans exhibit a weak response to these peroxisome proliferator chemicals, which in part results from the relatively low level of PPARalpha expression in human liver. Cell transfection studies were carried out to investigate the interactions of peroxisome proliferator chemicals with PPARalpha, cloned from human and mouse, and with PPARgamma, a PPAR isoform that is highly expressed in multiple human tissues and is an important regulator of physiological processes such as adipogenesis and hematopoiesis. With three environmental chemicals, TCE, perchloroethylene, and DEHP, PPARalpha was found to be activated by metabolites, but not by the parent chemical. A decreased sensitivity of human PPARalpha compared to mouse PPARalpha to trans-activation was observed with some (Wy-14, 643, PFOA), but not other, peroxisome proliferators (TCE metabolites, trichloroacetate and dichloroacetate; and DEHP metabolites, mono[2-ethylhexyl]phthalate and 2-ethylhexanoic acid). Investigation of human and mouse PPARgamma revealed the transcriptional activity of this receptor to be stimulated by mono(2-ethylhexyl)phthalate, a DEHP metabolite that induces developmental and reproductive organ toxicities in rodents. This finding suggests that PPARgamma, which is highly expressed in human adipose tissue, where many lipophilic foreign chemicals tend to accumulate, as well as in colon, heart, liver, testis, spleen, and hematopoietic cells, may be a heretofore unrecognized target in human cells for a subset of industrial and environmental chemicals of the peroxisome proliferator class.
منابع مشابه
Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters.
Administration of phthalates is known to cause toxicity and liver cancer in rodents through the activation of peroxisome proliferator-activated receptors (PPARs), and the monoesters appear to be the active metabolites that function as ligands of PPARs. There is evidence that PPARs exhibit significant species differences in response to ligand activation. In this study, the activation of mouse an...
متن کاملComputational screening of phthalate monoesters for binding to PPARgamma.
Phthalate esters are ubiquitous environmental contaminants that interact with peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors. Molecular docking and free energy calculations were performed in an effort to identify novel phthalate ligands of PPARgamma, a subtype expressed in a wide range of human tissues. The method was validated using several agonists and part...
متن کاملAntiplatelet actions of statins and fibrates are mediated by PPARs.
OBJECTIVES Statins and fibrates are hypolipidemic drugs which decrease cardiac events in individuals without raised levels of cholesterol. These drugs inhibit platelet function, but the mechanisms by which this pleiotropic effect is exerted are not known. METHODS AND RESULTS We used a range of approaches to show statins inhibit human platelet activation in vitro while engaging PPARalpha and P...
متن کاملFatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma.
Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-Delta12, 14-prostaglandin J2 have been shown to bind to PPARgamma, it has remained uncl...
متن کاملAdvances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models: relevance for human health and disease
Peroxisome proliferator activated receptors (PPARs) are a family of related receptors implicated in a diverse array of biological processes. There are 3 main isotypes of PPARs known as PPARalpha, PPARbeta and PPARgamma and each is organized into domains associated with a function such as ligand binding, activation and DNA binding. PPARs are activated by ligands, which can be both endogenous suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology and applied pharmacology
دوره 161 2 شماره
صفحات -
تاریخ انتشار 1999